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Introduction. The problem of computing the thermal conditions for bodies immersed in an infiltrated granular bed is 

of interest in many areas of thermal power engineering and chemical technology. The traditional approach to solving this 
problem is to use the average heat transport equations and Darcy's law of filtration neglecting the condition for fluid sticking 

to the wall. The potential character of the flow allows us to find rather simple analytical dependences for the heat transfer [1]. 
The results obtained in this way are valid for filtration velocities which are not too high, as long as thethermal boundary layer 

is thick enough so we can neglect the effect of the wall zone of the granular layer. For high Peclet numbers, the thermal 
boundary layer is localized within the wall zone, and we need to use other approaches to solving this problem. 

The simplest model for flow in a problem medium, taking into account the condition for sticking to the wall, is the 

model in [1] 

& V Z v - ~ v -  V p =  O; 
m K (1) 

V �9 v = O, (2) 

where v is the filtration velocity;/~ is the velocity of the fluid; p is the pressure; K, m are the permeability and porosity of the 

granular bed. As shown in [3], the tangential stress on the wall of a tube with a granular bed calculated using model (1), (2) 

proved to be in good agreement with the experimental data. 
Heat transfer in a porous medium is modeled using the heat transport equation with effective thermal conductivity 

coefficient 

v .  V T =  a EV2T (3) 

(T is the average temperature of the medium). 

Equations (1)-(3) are similar to the equations of average motion in a narrow gap between two plane-parallel plates, or 

in a Hele-Shaw cell [4]. Assuming no transverse motion and parabolicity of the local velocity distribution 

w ( x , y , z ) = 6 ~  1 -  v(x,y) 

(w, v are the local and average flow velocity vectors, lying in the Oxy plane parallel to the plates of the cell; z is the transverse 
coordinate (0 _< z _< h)), averaging the Stokes equations over the width of the gap 

a 2 w -  V p =  O, a_p O,V w 0 It VZw + I t  az 2 az 

(V = (a/ax, Olay)) leads to the following system of equations of motion: 
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V2 v 12/~ V p 0; (4) 
- h - - - ~  v - = 

v. v = 0. (5) 

If we assume that the local temperature distribution over the cross section of a cell whose side plates are thermally 

insulated is constant (T = T(x, y)), then averaging of the heat transport equation over the cross section of the slot gives 

v �9 V T = a V2T (6) 

(a is the thermal conductivity of the fluid). 

The similarity of equations (1), (2), to equations (4), (5) and also the similarity of (3) to (6) allows us to hope that using 
a Hele-Shaw cell we can model heat and mass transfer processes in a porous medium for large Peclet numbers. Such modeling 

has significant advantages over making direct measurements in a porous medium, requiring fine and tedious experimental 
technique minimally disturbing the structure of the medium. The possibilities for hydrodynamic and thermal visualization are 

considerably increased. Furthermore, when modeling using a Hele-Shaw cell, the transfer coefficients and the properties of 
the fluid are known, while in a porous medium we need additional measurements of the effective transfer coefficients. In [5, 

6], an analogy was demonstrated between heat transfer processes for natural convection in a porous medium and in a 

Hele-Shaw cell. 

In this paper, we have carried out a theoretical and experimental investigation of mass transfer to a cylinder in a 

Hele--Shaw cell for forced convection. The results obtained are compared with analogous experiments in a granular bed carried 

out earlier. We have demonstrated the analogy between the processes of convective heat and mass transfer in a porous medium 
and in a Hele-Shaw cell for large Peclet numbers Pc. 

Hydrodynamics and Mass Exchange in Flow Around a Cylinder in a H e l e -  Shaw Cell. Let us consider flow around 

a cylinder of radius R (located transverse to a narrow slot formed by two plane-parallel plates) by a uniform flow of fluid with 

average flow velocity U=.  After introducing the stream function Eqs. (4), (5) are transformed. 

12 (7) 
v'~  - u v ~  = o. 

The boundary conditions for uniformity of flow far from the cylinder and sticking on its boundary have the form 

~0 "*. U=r sin0, r ~ 0 %  

~ = O , ~ r  = 0 ,  r =  R 

(r, 0 are the polar coordinates). 

Problem (7), (8) is easily solved by the method of separation of variables: 

(8) 

r K2(2"~R/h) Rz hKl(2V' 3r/h) 
= -- + V~-K0(2V~-R/h) sin0. ~, U .  K0(2V'3"R/h ) r (9) 

From (9) we fred the tangential stress of friction on the surface of the cylinder 

r~(2,/TR,'h) 
a2r = 4v~ "~ty" sin0. (10) 

For Hele-Shaw flows, a typical situation is when the longitudinal dimensions of the body considerably exceed the 

thickness of the slot (R > > h). In this case, the ratio of the MacDonald functions in (I) is practically unity, therefore 

~__ ,u U| 
= 4V~" sin0 = 6,928--~-sin0. (11) 
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Analogously to (6), the equation for the concentration has the form 

v .  V C =  DV2C (12) 

(D is the diffusion coefficient). On the surface of the cylinder, we impose a boundary condition of the first kind 

C -- C ,  �9 = g (13) 

(C w is the concentration on the surface). Far from the cylinder, the concentration tends toward the concentration of the 

substance in the incoming flow: 

C -" C| �9 "* ~*. (14) 

Let us solve problem (12)-(14) in the approximation of  a diffusion boundary layer, assuming it is so thin that the 

distribution of the longitudinal velocity within the limits of the diffusion layer is linear: 

l" 
u = ~-y. (15) 

Then let us use the boundary-layer coordinates tied to the surface of the cylinder y = r - -  R, x = r0. From the 

continuity equation and expression (15), it is easy to obtain an expression for the y component of  the velocity 

1 dr 
2/~ dx  

Then the equation for the diffusion boundary layer is written as follows: 

, i  ]ac 
;Y x z. dx  =z'Ty; 

C -~ C , y = O, C = C , y "  **. 

(16) 

(17) 

The problem (16), (17) has the known solution [7]: 

C - C _ 3 f e_? dt. 
(18) 

Here 

yrU2(x) 

[glaD f r*/2(x')dx 'l I/3 (19) 
0 

Let us define the Sherwood number as 

/,2R 
S h -  

D ( c  - c )  

(Jw = -DOC/0y  [ y=0 is the diffusion flux on the surface of the cylinder). Using relations (11), (18), (19), for the local 
Sherwood number we obtain 

S h O )  - - -  

31/2 . 2 4/3 

-- 1,629 
(20) 
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where 

[ o -] -1/3 2U,,R 

The  value of Sh at any (0 = 0) point of the cylinder and the average value of Sh respectively have the form 

2 . 3  s/6 [ R~ l /3  , .1 /3  
Sh,,---Sh(O)-  tPe ) -- ,865 Pe ; 

(21) 

�9 - F[~--4/ -, 2/3 

1 3 x/2 " 
S h  Sh(0 )a0=  

o F (22) 

For a cylinder in a porous medium, we write Eqs. (7) and (12) as 

m 
V 4 ~o - ~ V2~ = 0, v �9 V C -- DafV2C 

(Def f is the effective diffusion coefficient), and we represent the solutions obtained above as follows: 

ZuU.m 1/2 
r = KI/-'-------i~ sinO; (23) 

Sh(0) = 0,gSSee 1'3 (24) 

/ ,n / 1/6 
Sh~ = 0'978Pel/3, ~aa ) ; (25) 

1/6 

Here the Sherwood and Peclet numbers include the effective diffusion coefficient Deft; the Darcy number Da = k/(2R) "2. 
Earlier the problem of flow around a cylinder was solved in a full three-dimensional formulation in [8] using the 

method of joining asymptotic expansions about the small parameter h/R. The inner expansion of the velocity along the boundary 
of the cylinder, valid at distances O(h) from the boundary, has the form [8] 

u c~ = 2U**sinO{ ( 6  h 1 - h) - n~ z.~. (2k + 1)-3sin[n(2k + 1)~] e - ~ z ~ + l ) ~ ] . ~  , ~  z 

From this, the tangential frictional stress averaged over the cross section of the slot is 

1 h 0uCO 1 6 ~ ( 3 )  ~uU| /~U| 
= fol~--I d z -  sin0=6,513---~--sin0, r ~ oy y-o ~3 h 

which is different from the result (11) we obtained by 6.4 %. Yielding results which are insignificantly different from the more 
exact solution in [8], the proposed method for solving the problem using equations averaged over the cross section of the slot 
is considerably simpler (the two-dimensional problem is solved). At the same time, the average equations of motion and heat 
and mass transport in the Hele-Shaw cell are similar to analogous transport equations in porous media, which makes it possible 
to use a Hele-Shaw call for modeling forced convection in a porous medium for large Peclet numbers. 
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Description of  the Experimental Apparatus and Technique. We used the electrodiffusion method in [9] for 

measurement of the mass exchange. The apparatus was a closed circulating loop with a reservoir at a constant level 1 (Fig. 

1). The electrolyte from the lower reservoir 2 was supplied to the upper constant-level reservoir by pump 3 through a thin 

purification filter 4. The fluid was supplied to the working section 6 from the upper reservoir through the system of rotameters 

5, and then ran into the lower reservoir 2. The working section (Fig. 2) was made of two organic glass plates of thickness 24 

mm, between which an insert of organic glass of thickness 0.95 mm was pressed along the edges. The geometric dimensions 

of the section and the experimental cylinder (2R = 30 mm) matched the dimensions of analogous elements in [10]. 

A schematic diagram of the experimental cylinder also is shown in Fig. 2. The working surface of  the cylinder (the 

cathode) consisted of  two parts: the smaller part served for measurement of the local mass exchange. The anode is two rings 

made flush with the surface on the side walls of  the channel. The cylinder can be rotated about the axis. 

Thus, using a local sensor, we could obtain the distribution of the mass exchange coefficient along the perimeter of 

the cylinder. The dimension of  the local sensor along the course of the flow (along the perimeter of  the cylinder) is 1.9 mm. 

The gap between sensors was only 0.1 mm. The transverse dimension of the sensors matched the transverse dimension of the 
channel (0.95 mm). The total mass flux from the entire surface of the cylinder could be obtained by two methods integration 

of the readings of the local sensor and simultaneous measurement using the large and small sensors, which allowed us to 

monitor the quality of  the experiments. 

The working fluid was a 0.02 normal solution of potassium ferricyanide and a 0.024 normal solution of potassium 

ferrocyanide in a 0.6 normal aqueous NaOH solution. The electrolyte solution differed little from water with respect to its 

physical properties. The mass transfer coefficient was determined using the formula/3 = I/(nFSC0), where I is the limiting 

diffusion current of the sensor, A; n is the number of electrons participating in the electrochemical reaction (for the ferricyanide 

system, n = 1); F is the Faraday number, F = 96,500 coulombs/mole; S is the area of  the sensor, m2; C O is the concentration 

f active [Fe(CN)6] 3 -  ions in solution, moles/m 3. For determination of the diffusion coefficient, we used the dependence [11] 

109 



JO0~ 

2000 

~000 

d 
Line ] R. 1 ~ , ,  

* I 4~1q04~ 

41 2o,~olz, o~ 
51 ,.~o1~,oo 

I ~ 4 ~ , ~  
" %  % 71724OOl t ~',4 

' S~ ' r '8, degrees 

Fig. 3 

pDm ffi (2,34 + o,14ro) �9 10 -'s. 
T 

tl 

Here r 0 = 0 . 5 ~  ZiC i is the ionic strength of the solution; Z i is the charge on the ions comprising the electrolyte; C i is their 
i=1 

concentration in solution, moles/m 3. The viscosity of  the electrolyte was determined by VPZh-3 viscometer, the concentration 

of [Fe(CN)6] 3 -  ions was determined by a spectrophotometer, the temperature of the solution was determined using a 

thermocouple, and the electric current was measured by a microammeter. The fluid flow rate was monitored by a system of 

precalibrated rotameters. The range of  investigated Reynolds numbers Re in the apparatus was determined ultimately by the 

ratio of the rate at which ions were supplied to the surface and the rate of  the chemical reaction. The quality of  the 

voltage-current  curves deteriorated at large Reynolds numbers. 

Discussion of  Experimental  Results. In Fig. 3, we present the experimentally measured distributions of the mass 

transfer coefficient over the surface of the cylinder. In Fig. 4, they are compared with the values calculated using expression 

(20). All the way up to Re = 2UooRh, = 600, we observe satisfactory agreement betw~.en the measured quantities and the 

calculated values. With further increase in Re, the measured values become higher than the calculated values in the front part 

of the cylinder (0 < 0 < 90 ~ and the mass transfer rate in the back portion of  the cylinder (90 ~ < 0 < 180 ~ becomes 

practically constant. The latter phenomenon is connected with development of a backflow zone to the rear of the cylinder [10] 

under the action of  inertial forces. A measure of their effect is the ratio of the characteristic value of the convective terms 

pU~2(2R) (in Eq. (4), they are discarded) to the scale of the drag force in the He le -Shaw cell #U=/h  2 (see (4)), i.e., the 

Reynolds number 

Re.- ~ - 

the values of  which are indicated in Figs. 3 and 4 along with the conventional Reynolds number Re. For the given experimental 

conditions, Re.  = 10-3.Re, thus deviation of the mass transfer value from the calculated formulas obtained above occurs for 

Re. = 0.6. 

The experimental result presented in Figs. 5 and 6 (Sc = P/D is the Schmidt number) on the mass transfer at any point 

and the average mass transfer also deviate from the calculated dependences for Re.  = 0.6. Thus the value Re.  = 0.6 delimits 

the range of  applicability of the solutions presented above for the average transport equations in a He le -Shaw cell. 

In order to illustrate the analogy between transport processes in a porous medium and in a He l e -Shaw cell, let us 

compare the calculated dependences (23)-(26) with the experimental measurements of the friction and mass transfer for trans- 
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verse flow around a cylinder in a granular bed, carried out using the electrodiffusion method in [12, 13]. In the experiments, 

we used a cylinder of  diameter 2R = 50 mm and glass beads of diameter dp = 3.2 mm. The permeability of  the granular bed 

was calculated using the Carmen-Kozeny  formula 

m302 
g - - -  e 

180(1 - -  m) 2 

for porosity m = 0.4 for random packing of spheres [14]. 

In Fig. 7, we present experimental data from [12] on the distribution of the dimensionless tangential frictional stress 

over the surface of  the cylinder 

T . ~  1 /2  

~,tl ra 1/z 

for different filtration velocities compared with its theoretical value 2sin0 (the line) according to (23). In Fig. 8, we present 

the average coefficient of friction 

- -  - 

compared with the calculated dependence following from (23) 

8 1't/1'11/2 8m 1/2 

c / = - ~  U K::2 -- ~ (ReDa) -I, (27) 

where pf, rJf are the density and viscosity of the fluid; m = 0.4; Da = 4.1-10 -6 for the given experimental conditions. 

As we see from this graph satisfactory agreement between the calculation and the experimental is observed up to Re 

= 2U=R/pf  -.~ 60, after which the experimental points go below the theoretical curve; Re = 60 under the given experimental 

conditions corresponds to a Reynolds number along the diameter of the grain to Rep = U = ~ / ~ f  --- 3. For such values of Rep, 
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rearrangement of the flow regime in the granular bed occurs: the slow Darcy filtration flow regime changes to the inertial 

regime with development (under the action of growing inertial forces) of separation zones in the flow of fluid between grains 

[15]. 
Due to the absence of experimental information about the effective diffusion coefficient, we have assumed the following 

expression for it: 

n . =  3,on/, (28) 

where Df is the diffusion coefficient for the liquid. 
The consistency of the results of measurements of the local mass transfer coefficient presented in Fig. 9 with the values 

calculated using formulas (24) and (28) (lines 1-3) also can be considered satisfactory up to values of Re - 40 (Rep = 2), for 

which deviation of the experimental data [13] from the calculated values occurs. An analogous pattern occurs in the behavior 

of the average mass transfer coefficient (Fig. 10, where the points represent the experimental results from [13], the line 

represents the calculation using formulas (26) and (28)). 
As we see, deviation from the calculation dependences occurs at approximately the same values of Rep as for the 

friction. In this case, enhancement of mass tranfer occurs upon going to the inertial flow regime in a granular bed compared 

with the Darcy filtration regime. 
The measured mass transfer coefficient at any point of the cylinder agrees satisfactorily with the calculation using (25) 

and (28) (the line) over the entire range of filtration velocities, as we see from Fig. 11 (the points represent the experimental 

results in [13]). This is connected with the low velocities of motion of the fluid in its vicinity and consequently with the later 

transition to the inertial flow regime. 
Thus the presented analysis of the experimental data on mass exchange transverse to a cylinder in a granular bed with 

flow around the cylinder and in a Hele-Shaw cell has demonstrated the existence of an analogy between these two processes 

up to Rep ~ 2-3 in a granular bed and Re. = 0.6 in a narrow slot. 

REFERENCES 

1. Yu. A. Buevich and D. A. Kazenin, "Limit problems of heat or mass transfer to a cylinder and a sphere immersed 

in an infiltrated granular bed," Prikl. Mekh. Tekh. Fiz., No. 5, 94-102 (1977). 

112 



. 

3. 

4. 

5. 

. 

7. 
8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

H. S. Brinkman, "A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles," Appl. 

Sci. Res., A1, No. 1, 27-34 (1947). 
V. A. Mukhin and N. N. Smirnova, "Investigation of heat and mass exchange processes in filtration of porous media," 
Novosibirsk (1978); Preprint, Inst. Termofiz., Sib. Otdel., Akad. Nauk SSSR, No. 26-78. 
V. D. Zhak, V. A. Mukhin, V. E. Nakoryakov, and S. A. Safonov, "Propagation of a submerged jet in a narrow 

slot," PriN. Mekh. Tekhn. Fiz., No. 3, 69-77 (1985). 
A. V. Gorin, A. G. Khoruzhenko, and V. M. Chupin, "Natural convection from a heat source in a narrow slot," in: 
Hydrodynamics and Heat and Mass Exchange in Stationary Granular Beds," Collected Scientific Works [in Russian], 
Inst. Termofiz., Siber. Otdel. Akad. Nauk SSSR, Novosibirsk (1991), pp. 128-138. 

S. S. Vorontsov, A. V. Gorin, V. E. Nakoryakov, et al., "Natural convection in a Hele-Shaw cell," Int. J. Heat Mass 

Transfer, 34, No. 3, 703-709 (1991). 
M. E. Shvets, "Solution of a problem for an equation of the parabolic type," PMM, 18, No. 2, 243-244 (1954). 
B. W. Thompson, "Secondary flow in a Hele-Shaw cell," J. Fluid Mech., 31, Pt. 2, 379-395 (1968). 
V. E. Nakoryakov, A. P. Burdukov, O. N. Kashinskii, and P. I. Geshev, "Electrodiffusion method for investigation 
of the local structure of turbulent flows," Inst. Termofiz., Siber. Otdel, Akad. Nauk SSSR, Novosibirsk (1986). 
V. E. Nakoryakov, V. D. Zhak, and S. A. Safonov, "Flow in a Hele-Shaw cell at large velocities," Russian Journal 

of Engineering Thermophysics, 1, No. 1, 1-23 (1991). 
S. L. Gordon, J. S. Newman, and C. W. Tobias, "The role of ionic migration in electrolytic mass transport 
diffusivities of Fe(CN)63- and Fe(CN)64- in KOH and NaOH solutions," Ber. Buns. Gesel, Phys. Chem., 70, No. 

4, 414-420 (1966). 
V. A. Mukhin, A. A. Voropaev, and V. V. Baluev, "Experimental investigation of surface friction in transverse flow 

around a cylinder in a granular medium," in: Hydrodynamics and Heat and Mass Exchange in Stationary Granular 
Beds, Collected Scientific Works, Inst. Termofiz., Siber. Otdel. Akad. Nauk SSSR [in Russian], Novosibirsk (1991), 

pp. 14-21. 
B. E. Nakoryakov, V. A. Mukhin, V. V. Baluev, and A. A. Voropaev, "Transport processes in transverse flow around 

a cylinder by filtration flow in a stationary granular medium," in: Hydrodynamics and Heat and Mass Exchange in 
Stationary Granular Beds, Collected Scientific Works, Inst. Thermofiz. Siber. Otdel. Akad. Nauk SSSR [in Russian], 
Novosibirsk (1991), pp. 3-13. 
M. I~. Azrov and O. M. Todes, Hydraulic and Thermal Principles of Operation of Apparatus With Stationary and 
Boiling Granular Beds [in Russian], Khimiya, Leningrad (1968). 
V. I. Volkov, V. A. Mukhin, and V. E. Nakoryakov, "Investigation of the flow structure in a porous medium," Zh. 
Prikl. Khim., No. 4, 838-842 (1981). 

113 


